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Abstract: 

The Wilberforce pendulum has long provided a favorite, and highly visual, 

method for displaying the energy interchange between coupled 

oscillations, but here we show that it is also suited to detailed 

quantitative measurement and modeling of coupled-oscillator phenomena.  

We make a careful numerical model of the user-variable rotational inertia 

of a commercial Wilberforce apparatus, and measure the two normal-

mode oscillation frequencies of the system over a wide range of inertia 

settings.  The observed mode frequencies match the theoretical 

predictions for coupled oscillators, and can be used to determine the 

model's (three) parameters with remarkable precision.  The mode 

frequencies' variation with rotational inertia reveals a characteristic 

'avoided crossing' seen generically in systems of coupled oscillators. 
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I . Introduction 

 

The Wilberforce pendulum has served for generations as a delightful and 

very visible method for demonstrating some of the phenomena of coupled 

oscillators.  In its typical form, it consists of a helical spring, fixed at its 

top end, and supporting a mass on its free lower end.  Such a system can 

undergo simple harmonic motion in a translational mode (with the mass 

moving up and down), or in a torsional mode (with the mass rotating 

about a vertical axis).  If the rotational inertia of the mass is properly 

chosen (so that these two frequencies would match), then the motion of 

the system is strikingly counter-intuitive, as it displays the repetitive and 

complete interchange of energy between the translational and rotational 

motions of the system. 

 

Lionel Wilberforce invented this pendulum and published1 his discovery in 

1894.  In that and subsequent treatments2, the background was the 

theory of elasticity for the spring material, and the motivation was to use 

measureable properties of the pendulum's motion to infer elastic 

constants for the spring material.  In particular, the energy interchange 

rate can be used to extract Poisson's ratio3 for the spring material. 

 

This paper has a somewhat different aim.  Rather than go into the depths 

of elasticity theory, it seeks to cover some of the breadth of coupled-

oscillator phenomena, using the Wilberforce pendulum as an example 

especially accessible to measurement and modeling.  So here we make no 

attempt to derive, from the parameters of the spring as a whole, any 

elastic properties of its material.  Rather, we seek to display results that 
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are generic to other systems of coupled oscillators, including ones lacking 

any connection to elasticity. 

 

The dramatic interchanges of energy (from 100% translational to 100% 

rotational and back again) that can be demonstrated in a Wilberforce 

pendulum have always created an incentive to achieve the 'ideal tuning' 

that is necessary for this full interchange.  But a fixation on this tuning 

condition can hide from view all the other coupled-oscillator phenomena 

that can be demonstrated with this device.  Though ideal tuning is 

required for the full energy interchange, all the other phenomena of 

coupled oscillators occur at any value of the tuning.  In particular, for any 

value of tuning, the system possesses, and can be arranged to display, its 

two normal modes.  These normal modes, the 'eigenstates' of classical 

mechanics, have oscillation frequencies, and mode compositions, that can 

be readily measured, and theoretically modeled, over a wide range of 

tuning. 

 

Two previous articles4, 5 in this Journal have dealt with the very apparatus6 

we have also used for taking data.  Together they deal more than 

adequately with connections to elasticity theory, and the description of 

the beat phenomenon at ideal tuning.  Here we make systematic use of 

the user-variable rotational inertia of the pendulum bob in a commercial 

realization of Wilberforce's pendulum, and show that the system's 

rotational inertia can be varied over a factor-of-two range.  Over that 

range, we've studied the frequencies, and the compositions, of the normal 

modes; and within that range, we have found, and modeled in precise 
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detail, the 'avoided crossing' which shows up in all sorts of systems of 

coupled oscillators. 

 

We lay out an adequate amount of theory in section II, and describe our 

experimental procedures in section III.  Guided by the theoretical 

development, we analyze in section IV the experimental data, to test in 

detail the theoretical predictions, and to extract the values of the 

system's parameters.  In section V we use the Wilberforce-pendulum 

results to generalize to coupled-oscillator phenomena across classical 

mechanics, and even beyond.  There we also discuss broadly applicable 

concepts, such as 'avoided crossing' and 'adiabatic transfe', which 

emerge very concretely and naturally from the work described here on 

the Wilberforce pendulum.  

 

 

I I. Theory 

 

The Wilberforce pendulum that we've studied provides a near-perfect 

realization of the simplest system of coupled oscillations.  We suppose 

that the state of the system can be described by a vertically-oscillating z-

coordinate, and a torsionally oscillating θ-coordinate measuring rotation 

about the z-axis, and we ignore all its other degrees of freedom.  We 

suppose that a mass m and a rotational inertia I can be defined by their 

appearance in a kinetic-energy expression 

                     (1) 

€ 

T =
1
2
m (dz

dt
)2 +

1
2
I (dθ
dt
)2 ,



  5 

where a center-of-mass theorem assures us of the absence of any cross 

term.  We also model the elastic potential energy of the system by the 

simplest possible quadratic form in the coordinates, 

                    (2) 

Here k gives the Hooke's-Law spring constant for vertical extension 

(without rotation), and κ gives the torsional constant of the spring (in the 

absence of extension).  Finally, we use ε to describe the coupling constant 

between extension, and torsion, of the spring, which arises because of its 

helical winding.  The units of k, κ, and ε are N/m, N.m, and N respectively.  

All three constants could be derived from a more fundamental treatment 

of the elasticity of the material of the spring, but we regard them as 

constants describing the spring empirically. 

 

We note that the quadratic form V(z, θ) is a positive-definite quantity, 

provided that ε2 < k κ (as we will find it to be).  Then the system's 

minimum energy, T + V, would come with both coordinates at rest at 

value zero.  This, however, ignores the actual environment of Wilberforce 

demonstrations, conducted as they are in a uniform gravitational field.  In 

actual fact, the system's potential energy is better described by 

                    (3) 

where the term +mgz is the additional gravitational potential energy.  The 

new potential-energy function V'(z, θ) has a non-zero minimum value, 

€ 

V =
1
2
k z2 +

1
2
κθ 2 + ε zθ .

€ 

V '(z, θ) = +mgz +
1
2
k z2 +

1
2
κθ 2 + ε zθ ,
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which defines the actual equilibrium condition of the system.  That 

minimum is easily shown to lie at 

                    (4a) 

                    (4b) 

These equations show that the spring stretches gravitationally under the 

weight mg, and also that the helical spring unwinds under load to an 

extent proportional to the coupling constant ε.  (These results will provide 

experimental checks on parameter values in section III and IV.)   

 

Now the actual potential V'(z, θ) can be written in an expansion about the 

equilibrium position (zeq , θeq), with the exact result 

                      (5) 

Apart from a constant offset, this V' function happily has the same form 

as (2) in terms of the departures from equilibrium, so we can hereafter 

subsume the effects of the gravitational loading of the system by taking 

the equilibrium positions (4) as defining the zero-values for our 

coordinates, and then using (2) as our potential-energy expression. 

 

We recognize (5) as a Taylor expansion of the total (elastic plus 

gravitational) potential energy of the system, in the variables (z - zeq) and 

(θ - θeq).  The coefficients for the first-order terms are required to be zero 

€ 

zeq = −mgκ (kκ −ε2)−1 = −
mg
k
{1− ε2

kκ
}−1 ;

€ 

θeq = +εmg(kκ −ε2)−1 = −
ε
κ
zeq .

€ 

V '(z, θ) =Vmin + 0 (z − zeq ) + 0 (θ −θeq )

+
1
2
k ( z − zeq )

2 +
1
2
κ (θ −θeq )

2 + ε (z − zeq ) (θ −θeq ) .
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by the definition of equilibrium, and the three terms in second order are 

the only such terms that can appear.  If there were to be higher-order 

terms in (2), they would also appear in (5); but such terms are not 

relevant to the frequencies of small oscillations in z and θ about their 

equilibrium values.  So the models (5) or (2) are complete for the case of 

interest. 

 

With kinetic- and potential-energy expressions of the form (1) and (2), it 

is easy to use the Lagrangian T - V to deduce the equations of motion of 

the system: 

                    (6a) 

                     (6b) 

The simple quadratic form of the potential energy has given very simple, 

though coupled, equations of motion.  These can be solved for normal 

modes by supposing that both z- and θ-coordinates evolve as simple 

sinusoids7, 

                    (7a) 

                    (7b) 

with a common normal-mode frequency ω, and normal-mode amplitudes A 

and Θ, yet to be found.  Inserting these modes into (6) gives the coupled 

(homogeneous) system of algebraic equations 

 

€ 

m ˙ ̇ z + k z + εθ = 0 ;

€ 

I ˙ ̇ θ + ε z +κθ = 0 .

€ 

z(t) = A cos(ωt) ,

€ 

θ(t) =Θ cos(ωt) ;
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 (8a) 

                    (8b) 

which has non-trivial solutions only if the determinant of the coefficient 

matrix vanishes: 

                    (9) 

Expanding this gives a quadratic equation for ω2; it can be simplified by 

defining two 'uncoupled frequencies' which would describe the separate z- 

and θ-motions if ε were to vanish in (6): 

                    (10) 

The equation for the normal-mode frequencies then takes on the form 

                    (11) 

Notice that the sign of ε has disappeared here, as only ε2 affects the 

frequencies ω.  Now solving the quadratic equation (11), we find that the 

normal-mode frequencies can be written as 

                    (12) 

In Section IV the complicated algebraic structure of this result will be 

rendered much more understandable. 

 

€ 

(−mω 2 + k)A + ε Θ = 0 ,

€ 

ε A + (−Iω 2 +κ)Θ = 0 ,

€ 

k −mω 2 ε

ε κ − I ω 2 = 0 .

€ 

ωz
2 ≡

k
m

; ωθ
2 ≡

κ
I

.

€ 

ω 4 − (ωz
2 +ωθ

2)ω 2 + (ωz
2ωθ

2 −
ε2

mI
) = 0 .

€ 

ω±
2 =
1
2
{(ωz

2 +ωθ
2) ± (ωz

2 −ωθ
2) +

4ε2

mI
} .
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With the 'eigen-frequencies' thus specified, the linear equations in (8) 

become consistent, and either of them can be used to predict the ratio of 

amplitudes that must appear in the normal mode.  We find that the 

higher-frequency mode must have 

                    (13a) 

while the lower-frequency mode must have 

                    (13b) 

Since both denominators that appear in (13) turn out to be positive, it is 

worth noting that these predict Θ/A ratios of opposite sign, which 

unambiguously distinguishes the two normal modes from each other. 

 

To illustrate the energy-interchange phenomenon for which the 

Wilberforce pendulum is famous, it is sufficient to consider a 

superposition of the two normal modes of the form 

                    (14a) 

                    (14b) 

and these equations allow us to understand the ideally-tuned Wilberforce 

pendulum of the traditional coupled-oscillator demonstrations.  If such a 

pendulum is excited by pulling it down without rotation, followed by a 

release from rest, we need an initial condition of zero angular deflection; 

this requires that the constants Θ+ and Θ- be equal and opposite.  But if 

we want the vertical translational motion to pass (after an energy-

€ 

Θ+ /A+ = + (ε /I) (ω+
2 −ωθ

2)−1 ,

€ 

Θ− /A− = −(ε /I) (ωθ
2 −ω−

2)−1 .

€ 

θ(t) =Θ+ cos(ω+ t) +Θ− cos(ω− t) ,€ 

z(t) = A+ cos(ω+ t) + A− cos(ω− t) ;
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exchange time) instantaneously through a state of rest, we also need the 

constants A+ and A- to be equal in value.  The requirements Θ+ / Θ- = -1 

and A+ / A- = +1, together with (13), entail that 

                    (15) 

which can be simplified using (12) to give 

                    (16) 

This is the mathematical expression of the condition for 'ideal tuning' of 

the Wilberforce pendulum, and it says that the frequencies of the 

(uncoupled) modes have to match.  It is usually attained via adjustment 

of the rotational inertia I of the pendulum bob.  But it is crucial to note 

that whether or not the tuning is 'ideal' in this sense, the two normal 

modes (12, 13) still exist. 

 

The full energy interchange which occurs for ideal tuning defines an 

energy exchange time Tex, which is related to other measureable 

parameters.  For the conditions imposed on A± and Θ± above, we have at 

t=0 all the energy in the translational motion of the system.  For the two 

terms in (14a) to go from in-phase, to fully out-of-phase, motion requires 

that a phase difference of π radians accumulate in the arguments of the 

two cosine functions in (14a); this occurs at a time 

                    (17) 

€ 

−1=
(Θ+ /Θ−)
(A+ /A−)

=
Θ+ /A+

Θ− /A−
= −

ωθ
2 −ω−

ω+
2 −ωθ

2 ,

€ 

2ωθ
2 =ω+

2 +ω−
2 =ωz

2 +ωθ
2, or ωz

2 =ωθ
2 , k

m
=
κ
I

.

€ 

(ω+ t−ω− t) = π , ie. t = Tex =
π

ω+ −ω−

.
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By this time, the initially out-of-phase cosines in (14b) have come to be 

fully in phase, which accounts for the motion being entirely rotational at 

time t=Tex.  The energy interchange cycle continues in time increments of 

Tex. 

 

At the ideal-tuning condition (16), it is easy to work out the normal mode 

compositions (13) to find that 

                    (18) 

If we connect the rotational inertia I to the product of the mass m and 

the square of a radius of gyration ρ, according to I ≡ m ρ2, then the mode 

compositions are given by the very simple relation 

                    (19) 

which is a useful guide to setting up the normal modes in the ideal-tuning 

case. 

 

All the theoretical modeling thus far has entirely neglected any dissipation 

in the system, and happily this is a good approximation provided that the 

timescale for energy loss is long compared to the energy-exchange time.  

In practice, we find that small-amplitude translational oscillations drop to 

1/√2 of their initial size after about 5 minutes ≈ 300 s, which gives an 

energy-decay half-life that's comfortably large compared to the energy 

exchange time at optimal tuning, which we find to be Tex ≈ 15 s. 

 

€ 

Θ+ /A+ = −Θ− /A− =
m
I

.

€ 

Θ± /A± = ±
m
mρ2

= ±
1
ρ

,
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I I I . Experiment 

 

We took all of the data used in this paper on a commercial Wilberforce 

pendulum that has been previously discussed4,5 in this Journal.  Its spring 

is made of 1-mm diameter steel wire, wound in a helix conforming to the 

threads of a right-handed screw.  Appendix A discusses our model for the 

effective mass m, and the rotational inertia I, of the spring-mass system.  

The appeal of the apparatus is that I's value can be changed over a wide 

range with good repeatability (while m is left unchanged) by redistributing 

parts of the mass of the 'pendulum bob' to differing distances from its 

axis of rotation. 

 

When we fix the top end of the pendulum's spring, and lower its bob until 

it comes to rest (both translationally and torsionally), the spring stretches 

and unwinds relative to those (inaccessible) values which would obtain in 

zero gravity.  Happily the displacements in z and θ predicted by (4) are 

linear in the suspended mass m, so we can rewrite those equations as 

                    (20a) 

                    (20b) 

We achieved a mass change simply by adding temporarily a mass of Δm = 

40. g to the bob of the pendulum, and found measured static 

displacements (with uncertainties) 

€ 

Δzeq = −
Δmg
k

{1− ε2

kκ
}−1 ;

€ 

Δθeq = −
ε
κ
Δzeq .
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           (21) 

Here we've taken z to be positive upwards, and θ to be positive for 

counter-clockwise rotation of the bob (as seen from above). We'll show 

below that the bracketed factor in (20a) is within 1% of unity, so that 

with (Δm g) a known quantity, these results basically give us the values of 

k and (ε/κ).  Note that the sign of ε is determined by these observations; 

we find that our helical spring 'unwinds' somewhat under load, which for 

our definition of θ means that Δθ is positive, and thus ε is positive also. 

 

All of the rest of the data in this paper come from dynamically, rather 

than statically, obtained observations.  We describe first a procedure for 

'ideal tuning' of a Wilberforce pendulum; next, how to launch it in its 

normal modes; and last, how to find those normal modes at any other 

tuning of the pendulum.  Our 'tuning parameter' is specified at this stage 

by the number of full turns, n, of the nuts on the side studs of the 

pendulum bob, measured from n=0 at their innermost positions.  This 

allows reproducible translations of Δr = 1.00 mm outward for each Δn = 1, 

since the nuts ride on threaded studs of pitch 1.00 mm. 

 

The goal of 'ideal tuning' is to make possible the display of complete 

interchange of energy between translational and rotational motion of the 

bob.  We excite our system by pulling the bob straight down (using 

perhaps z0 = -0.20 m, and θ0 = 0 rad) and then releasing it from rest8.  

The earliest oscillations of the system are translational, but energy soon 

couples into the rotational motion of the bob.  There comes a time at 

which translational motion is minimal, and rotational motion is most 

  

€ 

Δzeq = −0.145 (3)m ; Δθeq = + 42 (3) = 0.73 (5) rad .
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dramatic.  The goal for 'ideal tuning' is for this minimum in translational 

motion to reach all the way down to zero.  For our system, that condition 

is achieved for a setting near n = 8 turns outwards for all four tuning 

nuts. 

 

Of course once this full exchange of translational to rotational energy is 

achieved, the energy exchanges continue indefinitely, each taking the 

time Tex of (17).  But now it's time to move beyond the standard 

demonstration to the excitation of normal modes, which (by contrast) 

display ongoing motion with no energy exchange at all.  We find first the 

normal modes that exist at the ideal-tuning condition, by launching the 

pendulum from a state of rest at initial conditions such as (z0 = -0.20 m, 

θ0 ≈ ± 11 rad) which combine translation and rotation. 

 

Time evolution from such initial conditions displays much less 'energy 

exchange' than the standard demonstration; and for the right (empirically 

determined) combination of initial conditions Δz0 and Δθ0, there is no 

energy interchange at all.  The resulting motion is characterized by 

translational and rotational motions which reach turn-around points that 

are, and that stay, in synchrony, just as (7) predicts.  The motion in z(t) 

is oscillatory within an envelope which displays no 'beats', but only a slow 

exponential decay due to damping. 

 

Once a normal mode is recognized, it's worth trying the combination of 

initial conditions with the opposite sign of θ0, since theory predicts that 

this will give the other normal mode (in the ideal-tuning case).  The two 

normal modes differ both qualitatively and quantitatively.  The qualitative 
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difference corresponds to the sign difference in Θ/A for the two modes; 

visually, in either normal mode, the pendulum's bob displays a motion akin 

to that of an auger boring into a solid.  But the two normal modes of the 

Wilberforce pendulum appear to act as augers of opposite-handed 

threading.  The quantitative difference between the two normal modes is 

that their periods of oscillation differ.  The physical reason is that in one 

mode, the spring is unwinding as it stretches; in the other mode (the one 

of shorter period, ie. higher frequency) the spring is becoming more 

tightly wound as it stretches. 

 

Once a given normal mode can be excited purely, using the correct 

combination of initial conditions, it can be timed with considerable 

accuracy merely by eyeball and stopwatch.  The data in Table 1 were all 

obtained by stopwatch timing of 50 full cycles of a normal mode.  For our 

pendulum, typical cycle times are about 2.7 s, so eye-to-hand reaction 

time can be a small fraction of one cycle.  Because the same reaction 

time applies to the start and the stop of a timing interval, and because 

reaction times are further diluted over 50 cycles, it becomes possible to 

measure periods of oscillation to a precision of better than a part in a 

thousand.  

 

Now the normal modes thus found (and timed) for the ideal-tuning 

condition also exist for every other setting of the tuning parameter n.  

The difference is that for each new setting of n, there are new 

combinations of z0 and θ0 which lead to a normal mode.  The distinct 

ratios θ0/z0 required for the two normal modes remain of opposite sign, 

but their magnitudes change systematically, and differently, with the 
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tuning.  Thus it's easiest first to find (and to time) the normal modes with 

the pendulum tuned not far from the ideal-tuning condition, and then to 

explore systematically outwards from that point. 

 

In the end, we covered tuning over the full range of n=0 to n=26, by 

steps of size Δn=2, finding and timing both normal modes for 14 settings 

of n.  As it happened, this gave us tuning over a range not as large as 

desired.  So to explore in the regime of rotational inertia smaller that that 

provided by having all four nuts maximally inwards, we removed two of 

the nuts from the side studs, and threaded them instead onto the 

pendulum-bob's top stud.  Thus we preserved invariant the mass of the 

bob, but lowered its rotational inertia considerably.  The other two nuts, 

left on the side studs, could still be turned out by n* turns from their 

innermost positions.  We also found the normal-mode periods for settings 

of this n* from n*=0 to n*=6, by steps of size Δn* = 2. 

 

Those results are listed, in order of increasing rotational inertia I, in Table 

1.  From the observed timings T50 of 50 full cycles of oscillation, we can 

compute periods T = T50/50, frequencies f = 1/T, and angular frequencies 

ω = 2π f.  We'll see that ω2-values are of the greatest significance 

theoretically, and we'll label the higher (vs. the lower) frequency by a 

subscript + (vs. -) systematically. 

 

The 'ideal tuning' condition does not appear among the listings of Table 

1, though we'll see it can be found after-the-fact from the detailed 

modeling of Section IV.  But it occurs near a setting n=7.6, where the two 

normal modes exhibit T50 values near 131.3 and 144.4 s, so the two 
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periods are near 2.626 and 2.888 s, and the frequencies are about 381 

and 346 mHz (milliHertz).  The angular frequencies are then ω+ = 2.393 

rad/s and ω- = 2.176 rad/s.  The predicted energy-exchange time (17) at 

the ideally-tuned condition is then 

           (22) 

and this matches adequately the energy exchange times that can be 

observed after a launch from initial conditions such as (z0 = -0.20 m,  

θ0 = 0).  Recall that our definition of Tex gives the time for one-way 

energy transfer, so that 2 Tex = 29. s predicts the time interval between 

successive occurrences of (say) the absence of rotational motion. 

 

But the real motivation for taking all the data in Table 1 is that a much 

more detailed analysis can be accomplished using the whole of this set of 

rather precisely-determined information.  To do so, we'll see that we need 

a model which translates the raw independent variable (turns count n or 

n* for the tuning nuts) to the dynamically-relevant variable, the rotational 

inertia I of the pendulum bob.  This could be done by a variety of means, 

but in Appendix A we show how that modeling can be accomplished using 

only the masses and dimensions of components of the pendulum bob.  

The results are listed in columns in Table 1, first as I-values in the suitable 

units of g mm2, and then as the important (1/I)-values, converted into 

standard units of (kg m2)-1. 

 

 

 

 

€ 

Tex = π /(ω+ −ω−) = π /(2.393− 2.176) s−1 =14.5 s ,
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IV. Analysis 

 

The data thus obtained for normal-mode periods can be compared to the 

theoretical predictions for coupled oscillators, (12), in several ways.  We 

embark here on a sequence of graphs which successively tease out parts 

of the theoretical model, and give very direct ways to form initial 

estimates of the parameters of the model.  The graphs depend on 

forming artful combinations of the squares of the observable angular 

frequencies ω+ and ω-
 .  Since those squares of the normal-mode 

frequencies, ω+
2 and ω-

2, define the roots of the quadratic equation (11), 

it follows that this equation can also be written in factorized form as 

                    (23) 

Comparing this form with (11) makes it clear (as computation using (12) 

will confirm) that the sum, and the product, of the roots ω+
2 and ω-

2 take 

on quite simple forms, and forms very well suited to plotting of 

empirically-obtained data. 

 

For a first example, we find by comparing (11) and (23) that 

              (24) 

Since the sum of squares of mode frequencies Σ can be computed directly 

from observable quantities, this equation motivates a plot of observed 

(ω+
2 + ω-

2) values as a function of the independent variable (1/I).  Note 

that the sum Σ, plotted as (24) suggests, is predicted to be independent 

of the value of the coupling parameter, ε.  The results, computed using 

€ 

0 = (ω 2 −ω+
2)(ω 2 −ω−

2) =ω 4 − (ω+
2 +ω−

2)ω 2 + (ω+
2ω−

2) .

€ 

Σ ≡ω+
2 +ω−

2 =ωz
2 +ωθ

2 = (k /m) +κ (1/I) .
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the mode periods listed in Table 1, and the inertia calculations of 

Appendix A, are plotted in Fig. 1.  The points do indeed lie on a line as 

predicted by (24), and the intercept and slope respectively give initial 

estimates of the parameters 

           (25a) 

              (25b) 

with uncertainties of order 0.3% (but to be addressed in more detail 

below). 

 

For a second example of parameter extraction, we find from (11) and 

(23) an expression for the product of the squares of the normal-mode 

angular frequencies: 

                    (26) 

Again this motivates a plot of an experimentally observable dependent 

variable as a function of the independent variable, the well-modeled (1/I) 

values.  The results, again using Table 1 and Appendix A, are plotted in 

Fig. 2.  Here too the points lie along a line, and this time a line passing 

very nearly through the origin, as (26) in fact predicts.  The best-fit line 

shown in Fig. 2 extrapolates to an x-axis intercept of +17 (kg m2)-1, a 

departure from zero of at most 1.5-σ statistical significance, and in any 

case very small indeed compared to x-axis data values ranging from 3800 

to 8800 (kg m2)-1.  The discrepancy, if real, points perhaps to a 

systematic error, of size well under 1%, in the rotational-inertia model of 
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Appendix A. We also get from Fig. 2 a slope of value 4327 x 10-6 N.m/s2.  

Since from (26) this quantity is also given by 

                    (27) 

and since ε2 turns out to be so small compared to (k κ) , (25) and (26) 

together provide a method of finding ε2 of rather poor sensitivity.  Using 

instead the value 0.9911 found below for the bracketed quantity in (27), 

we instead deduce from Fig. 2's slope the estimate 

           (28) 

which compares neatly to the result 4354 x 10-6 N.m/s2 deduced from 

(25). 

 

Finally, since (ω+
2 + ω-

2) and (ω+
2 ω-

2) both have rather simple forms, the 

additional observable quantity (ω+
2 - ω-

2) 2 also has a form much simpler 

than (12), from which it can be shown that 

                     (29) 

Again plotting experimentally-determined values of the left-hand side as a 

function of the (1/I) values emerging from our inertia model, we are led 

by (29) to expect a parabolic dependence.  The data are shown in Fig. 3, 

and a parabola indeed appears.  The precision of the experimental values 

of ω+
2 and ω-

2 is high enough that, even after the differencing operation of 

(29), the points in Fig. 3 show scarcely visible scatter about the parabola. 
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A parabola of the form c0 + c1(1/I) + c2 (1/I)2 could be fit to the data of 

Fig. 3, but we choose instead to emphasize the location of the minimum 

by using as fitting function the parabolic form 

                 (30) 

so that the parabola's minimum is located on the horizontal axis at (1/I)-

value B, where the function reaches its smallest value of C.  Now Δ2 in 

(29) can also be transformed into a parabolic dependence on argument 

(1/I) around its minimum, with results  

                    (31a) 

                      (31b) 

                    (31c) 

so it becomes possible to compare the results of the parabolic fit in Fig. 3 

to the parameters in the model.  From (31a) and the value A = 702.3 x 

10-9 (N.m)2 from the fit, we find 

           (32a) 

which comports very neatly with (25b) above.  From (31b), using the 

value B = 6171 (kg m2)-1 from the fit, and the value {1 - 2 ε2/(kκ)} = 

0.9821 deduced below, we find 
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           (32b) 

which compares with the value 6246 (kg m2)-1 deduced from (25) above.  

Finally, we see from (31c) a result that depends strongly on the 

parameter (ε2/m), and connects it to the value C = 0.954 s-1 from the 

quadratic fit.  Solving, we find 

           (32c) 

In fact the height of the parabola's minimum above zero is determined 

directly by the value of ε2/m, so the C-parameter of the parabolic fit 

provides a rather high sensitivity to its value.  We'll show next that this 

small coupling constant can be determined, by a global fitting of the 

complete data set, to a precision better than 1% of its value. 

 

The three distinct fits thus far have provided visually-appealing graphs, 

and a variety of estimates for three parameters which fully describe the 

theoretical 'spectroscopy' of the system:  k/m, κ, and ε2/m.  But thus far 

it's not clear what the 'best estimates' for those parameters are, nor 

what their actual uncertainties are.  We address this problem by making a 

global fit of the entire data set to a three-parameter model, treating the 

modeled (1/I) values as the independent variable, and treating ω+
2 and ω-

2 

as two functions dependent upon it.  Then we define a global χ2 'misfit 

function' between data and theory by 

                     (33) 
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where σ is an assumed numerical uncertainty for each experimental ω2-

value, and where the fitting functions which ought to match the data are 

given by a version of (12), 

                     (34) 

The global χ2 sum includes all 36 data points, 18 di
(+) data values of ω2 for 

the upper-frequency modes, and 18 more d 
j
(-) values for the lower-

frequency modes, and it can be minimized as a function of its three 

arguments, the three fitting parameters.  The minimum value of χ2 ought 

to come out near 36-3 = 33 if the assumed input uncertainty σ is 

properly chosen, and if the data and the model do not differ 

systematically.  To get an estimate for the input uncertainties, we start 

with the period values of Table 1, with typical numbers for 50*T of 140 s, 

with uncertainties estimated near 0.07 s.  This gives fractional 

uncertainties δT/T near 1/2000, and thus δω2/ω2 near 1/1000.  Since 

typical numerical values of ω2 are near 5 s-2, we provisionally assign σ to 

be 1/1000 of this, or 0.005 s-2.  Using this gives a χ2 sum whose 

minimum is larger than the expected value of 33, so we conclude a 

posteriori that a better estimate for σ is 0.0078 s-2, to be attached to 

each ω2-value.  This enlarged uncertainty may be an indication of larger-

than-expected observational errors, or of small systematic errors in the 

inertia model of Appendix A. 

 

The parameter values which minimize χ2 are 

 

€ 

ω±
2(1/I; k /m, κ, ε2 /m) =

1
2
{ ( k
m

+κ
1
I
) ± ( k

m
−κ
1
I
)2 +

4ε2

m
1
I
} .



  24 

           (35a) 

           (35b) 

           (35c) 

where the uncertainties apply to the last digit shown.  They are assigned 

on the 'χ2 + 1' basis, and they reflect the a posteriori assignment of σ 

discussed above.  Because the data span an adequately large range of 

(1/I) values, the parameters' values turn out to be very nearly 

uncorrelated.  The numbers can also be used to establish 

                    (36) 

whose nearness to one is a good dimensionless measure of the weakness 

of the coupling, and whose value has been used above.  Together with 

the value of m = 0.5200 kg from Appendix A, the values (35) also allow 

the extraction of 

           (37a) 

           (37b) 

           (37c) 

 

The uncertainties in (35) give a good description of statistical 

uncertainties in the data, but there may still be systematic errors in the 
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parameters' values.  In particular, any systematic errors in the inertia 

model of Appendix A will show up creating systematic errors in the 

parameters above, in particular affecting the value assigned to the torsion 

constant κ.  There are additional errors possible in (k/m), since the theory 

assumes the top end of the spring is fixed, but in the experiment it was 

attached to a spring mount slightly compliant in the z-direction.  (This 

made possible the sensing, or the driving, of the vertical translational 

motion of the system.)  Nevertheless, the values in (35) do show how 

tightly can be constrained the parameters of a model intended to 

describe the observable 'spectroscopic' features of the Wilberforce 

pendulum. 

 

Another use of the constants deduced above is to evaluate the location 

of the 'ideal tuning' condition (16).  We see that this requires 

           (38) 

with an uncertainty of order 0.06%, or ±4 (kg m2)-1.  Inverting the model 

of Appendix A, we see that this occurs for turns-count n = 7.59 ± 0.02 

turns.  Another use of these constants is to evaluate the radius of 

gyration ρ in (19), which gives ρ  = (17.5 ± 0.1) mm 9, and from that, the 

ideal-tuning mode composition ratio, Θ/A = 57 m-1.  This is equivalent to 

requiring, in the ideal-tuning case, an initial vertical displacement of z0 = 

-0.11 m for initial rotational displacements of θ0 = ±2π, ie. for ±1 full 

rotations, of the bob. 

 

The parameters (35) can also be used to evaluate the theoretical 

expressions for the mode frequencies (34), and to give the limiting values 
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they would take on in the case that ε→0.  These theoretical expressions, 

together with the experimental data, are plotted as functions of the 

inverse rotational inertia, (1/I), in Fig. 4.  The data and the model 

illustrate vividly an 'avoided crossing', as they both vary with (1/I) in 

curves that are asymptotic toward the uncoupled-modes predictions, but 

depart from them characteristically given the presence of even the weak 

coupling between the modes.  Given the close visual agreement between 

the data, and the model for it, the detailed comparison between the two 

is best conducted in terms of the residuals, or (data - model) values, 

plotted as functions of (1/I) ; doing so reveals the expected scatter on 

the order of ±2σ, but no systematic structure. 

 

The curves in Fig. 4 also give a fine way to understand interactively the 

role of the three parameters in the theory.  In particular, the combination 

(k/m) gives the height of the horizontal asymptote, and κ gives the slope 

of the tilted asymptote.  The coupling constant (ε2/m) then gives the 

degree to which the curves depart from the lines toward which they are 

asymptotic. 

 

We thus regard the three parameters (35) as a satisfactory description of 

the dynamically-observed properties of the Wilberforce pendulum.  As a 

final 'reality check' of lower precision but wholly independent origin, we 

turn to the static deformation values (21), which were obtained by 

adding a mass Δm = 40. g, or a load (Δm g) = 0.392 N, to the pendulum 

bob.  Using the value (36) established above, we deduce from them the 

values 
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           (39a) 

           (39b) 

The first of these gives a value of k with an uncertainty of about ±0.06 

N/m, and in satisfactory agreement with (37a).  The second of these 

establishes that the sign of ε is positive.  The value it gives for ε/κ has an 

uncertainty of about ±0.3 m-1, and it is in fair agreement with (37c).  We 

conclude that the 'static data' give results less precise than the dynamic 

methods, but consistent with them.  

 

Yet another use of these parameters is to obtain 'retrodictions' of the 

compositions of the two normal modes, as a function of the inverse 

rotational inertia and hence of the turns-count, n.  We use the results 

(13), and plot them as a function of (1/I) values, using the parameters of 

(35) to evaluate the model's predictions.  The result are presented as a 

graph of (Θ+/A+) and (Θ-/A-) in Fig. 5.  Both ratios of 'required rotation 

per unit translation' reach a magnitude of 1/ρ = 57 rad/m at the 'ideal 

tuning' value of (1/I) = 6280 (kg m2)-1, but of course with opposite sign.  

The curves of (Θ±/A±) display first-order sensitivity to departures from 

the ideal-tuning condition, so that if the proportions (Θ/A) for both 

normal modes can be measured, this provides a quite sensitive test of the 

location of the ideal-tuning condition.  

 

For the rather large de-tunings accomplished in the experiments above, of 

course, the mode compositions change markedly:  the initial condition of 

rotation per unit translation required for launching a normal mode 
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changes, upwards and downwards, by about a factor of five at the 

extremes of the (1/I) values we've used.  It follows that the appearance 

of the normal modes changes dramatically away from ideal tuning; there 

are two limits of normal modes which are chiefly translational, and two 

other limits of normal modes which are chiefly rotational, in character.  

Another way to see this change of character is to analyze the kinetic-

energy content of the oscillating normal modes.  According to (7), there 

are two instants in each cycle at which z = 0 = θ; at these times, the 

energy of the system is wholly kinetic in character.  Using (7) for 

computing the relevant velocities, it is easy to get an expression for the 

fraction ftrans of the kinetic energy that is due to translation (as opposed 

to rotation) at these instants.  [Of course (1 - ftrans) gives the fraction of 

energy in rotation.]  That fraction is given by 

                  (40) 

and this expression can be evaluated, and plotted, for both of the normal 

modes, as a function of (1/I) over the range of interest, using the 

parameters (35) to evaluate the theoretical expressions (13).  The 

results are shown in Fig. 6, and again they display special results at the 

ideal-tuning condition, where the kinetic energy is divided equally between 

translation and rotation.  But at the extremes of the tuning range we've 

covered, the proportions of kinetic energy, translational:rotational, vary 

from about 97:3 to 6:94, again illustrating how the normal-mode 

compositions change dramatically in passing through the 'crossing' region. 
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V. Conclusions 

 

We conclude that the ‘spectroscopy’ of the Wilberforce pendulum 

confirms, in detail and with high precision, the theoretical treatment of 

coupled-oscillator phenomena.  In particular, we find that oscillation 

frequencies can be measured, and modeled, to precisions of order 0.1%, 

by rather simple means.  Details of the frequencies of the normal modes, 

in particular their variation with rotational inertia, can be investigated by 

graphing artful combinations of experimentally observable quantities.  The 

theoretical models turn out to depend on the rotational inertia (as an 

independent variable), and three theoretical parameters which can be 

extracted with good confidence and high precision. 

 

The implications of this work extend far beyond the interesting case of 

the Wilberforce pendulum.  Any classical system of two harmonic 

oscillators, coupled by a product-term akin to that in (2), will have an 

algebra isomorphic to that worked out here.  Since any such system will 

have two normal modes, we conclude that the combinations (ω+
2 + ω-

2), 

(ω+
2 ω-

2), and (ω+
2 - ω-

2)2 will also be useful in the analysis of properties of 

a generic two-coupled-oscillator system.  If, in such a system, one inertia-

like parameter or force-constant can be varied, we further expect that the 

normal-mode frequencies ω+
2 and ω-

2 will show a characteristic variation 

with that parameter.  In particular, the coupled system ought to display 

an ‘avoided crossing’ as a function of the adjustable parameter.  The 

degree of avoidance of the two ω2-curves (which would have crossed in 

the absence of coupling) is a sensitive measure of the strength of the 

coupling that is present. 
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There is also the exciting possibility of real-time variation of such a tuning 

parameter that gives rise to the possibility of ‘adiabatic transfer’10.  

Though this can occur in any system of two coupled oscillators, we’ll 

discuss it here in the language of the Wilberforce pendulum.  We imagine 

a pendulum bob, then, in which (by some internal mechanism) the 

rotational inertia I can change autonomously and continuously, at a 

modest rate, while the pendulum is itself oscillating.  To use the language 

of Fig. 4, we imagine a ‘bob’ of fixed mass, but of rotational inertia that 

could vary, so that (1/I) changed from (say) 4000 to 9000 (kg m2)-1 

over a few minutes’ time. 

 

Suppose, then, that I started large, ie. that (1/I) started small, and 

further that a Wilberforce pendulum were set up in a chiefly-translational 

normal mode at the starting value of low (1/I).  In the language of Fig. 4, 

the system would be ‘at’ point A.  Now suppose that I decreased 

systematically, raising (1/I) from its low to its high value, on a time scale 

long enough compared to energy-exchange time Tex, but shorter than the 

energy-decay timescale of the system.  ‘Adiabatic passage' predicts that 

the state of the system would ‘ride the curve’ in Fig. 4, staying in a 

normal mode (but one of ever-changing composition) as the system 

passed through states labeled B and C, and ending in the state labeled D.  

The drama of the outcome is that state D represents a pendulum in a 

normal mode which is almost purely rotational in character.  In brief, a 

continuous, and slow enough, variation in a single parameter would cause 

an energy transfer from nearly pure translation to nearly pure rotation. 
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Clearly, the same means, but with a different starting condition, could 

alternatively be used to ‘ride along’ the lower curve in Fig. 4; such 

adiabatic transfers would work for either direction of parameter variation, 

as well.  Unlike the cyclic energy transfers which occur in time Tex for the 

ideally-tuned Wilberforce system, these adiabatic transfers act to create a 

one-way transfer of energy which is complete, and which (for a slow 

enough variation of the system's parameters) does not require any 

careful tuning, timing, or synchronization. 

 

It is not clear if anyone has ever built a Wilberforce pendulum which was 

designed to exhibit this behavior, though it’s possible that such 

phenomena have been observed accidentally.  For such a demonstration 

to be convincing, it would be necessary to build a shape-changing 

structure whose mass stayed fixed, whose rotational inertia varied 

(through the right region) by about a factor of two, and which acted at 

every stage enough like a rigid body that the system’s dissipation would 

remain small.  It would be especially dramatic to build a system in which 

the tuning parameter could vary continuously but not merely 

monotonically, making possible a ‘trip’ such as ABCBA, or even ABCBCD, 

through the configurations of the coupled-oscillator system. 

 

Such adiabatic transfers are perhaps fanciful exhibits in classical systems, 

but they are subjects of active research in parallel cases in quantum 

mechanics11.  There are plenty of examples of two quantum-mechanical 

eigenstates whose energy eigenvalues are involved in an avoided crossing; 

in atomic physics the tuning parameter might be magnetic-field strength, 

while in molecular physics it might be inter-nuclear separation.  In such 
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cases, the strength of interaction will again manifest itself in the degree 

of avoidance at the (avoided) crossing.  Again, modeling the 

spectroscopy of the system can provide the values of a set of constants 

which characterize the interacting states.  Even the algebra of the energy 

values can be very similar to that discussed here, since the eigenvalues 

will emerge from a determinant such as (9).  One chief difference is that 

in quantum-mechanical cases, it is ω-values, not ω2-values, which are 

involved in the algebra.  This distinction can be traced ultimately to the 

fact that the time-dependent Schrödinger Equation is first-order in time, 

whereas Newton’s Second Law leads to classical equations which are 

second order in time. 

 

 

Acknowledgements:  We thank Zach Smith for his work, and initial data, 

on this Wilberforce pendulum. 
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Appendix A: Modeling the rotational inertia of the bob 

 

The purpose of this appendix is to connect the turns count n (or n*) of 

the tuning nuts to the rotational inertia I of the pendulum in the 

Wilberforce system, by using measured values for masses and dimensions 

of the components. 

 

We start with the measured mass ms = 78.0 g of the spring itself, and the 

total mass mb = 493.7 g of the entire ‘bob’ of the pendulum.  The 

effective mass of the system for low-frequency translational modes 

requires the addition of part of ms to mb; the simplest model for 'part of' 

gives the coefficient (1/3), but using Ref. 12, Berg and Marshall5 show 

that 0.337 is the better estimate, so we take 

  m = mb + (0.337) ms = 520.0 g. 

 

We now work on rotational inertia.  The spring, modeled as a thin-walled 

cylinder of radius rs = 15.5 mm, would contribute rotational inertia ms rs
2 

if it rotated as a rigid cylinder.  For the low-frequency torsional modes of 

the system, we similarly take (0.337) of this as a first contribution to I: 

  I spr = (0.337) ms rs
2 = 6315 g mm2. 

 

The ‘bob’ of the system includes a top nut, a top washer, and a top stud.  

These together contribute an estimated 

  I top = 71 g mm2 

to the total I, and they also constitute a net 5.8 g of the rotor's mass.  

That rotor also includes four tuning nuts, each of measured mass 17.4 g, 

and four side studs, each of estimated mass 5.55 g.  Subtracting all these 
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leaves a mass of 493.7 - 5.8 - 4(17.4 + 5.55) = mmain = 396.1 g for the 

rotor’s cylindrical body proper, which is of radius rmain = 17.5 mm.  So we 

get for the solid cylinder an inertia contribution 

  I main = (1/2) mmain rmain
2 = 60,653 g mm2 . 

 

The four side studs can each be modeled as a solid cylinder, of length l = 

30. mm and radius 2.75 mm, and (if rotated about their centers of mass) 

each would contribute I cm = m [(1/12) l2 + (1/4) r2) ]= 427 g mm2.  But 

in fact their centers are off-axis by (17.5 + 15.) mm, giving by the 

parallel-axis theorem a contribution 

  I stud = I cm + (5.55 g)(32.5 mm)2 = 6289 g mm2. 

 

Counting all the pieces thus far, which together give the part of I 

independent of the four tuning nuts' locations, we reach 

 I rigid = (6315 + 71 + 60,653 + 4*6289) g mm2 = 92,195 g mm2. 

 

To this needs to be added the contributions of the tuning nuts; each has 

mass mn = 17.4 g, and has dimensions thickness d = 4.8 mm, outer radius 

r2 = 12.0 mm, and inner radius r1 = 2.75 mm.  Rotated about a diameter 

passing through its center of mass, a nut would give 

  I cm = mn [(1/12) d2 + (1/4)(r1
2 + r2

2)] = 692.7 g mm2. 

But of course the nuts are out on the studs, distant by r = r(n) from the 

rotation axis.  For our rotor, the n=0 value of the turns-count puts the 

centers-of-mass of the nuts at r0 = 22.8 mm from the axis, and the 1-mm 

pitch of the studs ensures that r(n) = r0 + n(1.00 mm) under tuning.  So 

the model for each nut becomes 

 I nut = I cm + mn [r(n)]2 = [692.7 + 17.4(22.8 + n)2] g mm2. 
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So for the whole system, when four nuts are each n turns outward of 

their n=0 positions, we have 

 I(n)/[g mm2] = 92,195 + 4 [692.7 + 17.4 (22.8 + n)2 ] . 

If only two nuts are on the studs, the model changes; in this case, the 

bracketed terms above need a coefficient of 2 rather than 4.  But the two 

nuts mounted onto the top stud each contribute an inertia 

 I’nut = (1/2) mn (r1
2 + r2

2) = 1318.6 g mm2 , 

so the model in this case becomes 

  I(n*)/[g mm2] = 92,195 + 2*1318.6 + 2 [692.7 + 17.4 (22.8 + n*)2 ] . 

 

These results are used in constructing Table 1.  Naturally the results for I 

could be obtained by other means, including direct experimental 

determination.  Even a one- or two-point experimental check, perhaps of 

I(n=0) and I(n=20), would be a valuable test of the wholly-computed 

inertia model used here.  Such a check might be performed on a separate 

torsional apparatus, itself equipped with a single torsion fiber, using some 

simply shaped objects of known mass and easily-computed rotational 

inertia to calibrate the torsion fiber.  Since oscillation-period techniques 

could be used to sense I(n), precisions of perhaps one part per thousand 

might be attained.  The all-computed models here, by contrast, might 

contain systematic errors in some of their coefficients of order 1%. 
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Table 1 

 

Data obtained for normal-mode periods of the Wilberforce pendulum.  The 
'turns count' gives the tuning parameter, in full turns n (or n*) of the four 
(or two) tuning nuts, while the T50 values are the measured times required 
for 50 cycles of oscillation of each normal mode.  The model I and (1/I) 
values come from Appendix A on the rotational inertia of the system. 
 

turns 

count 

T50, in s 

(faster) 

T50, in s 

(slower) 

model I 

in g mm2 

model (1/I) 

in (kg m2)-1 

n* = 0 115.26 s 139.59 s 114,308 8748 

       2 116.59 139.59 117,621  8502 

       4 118.34 139.65 121,212  8250 

       6 119.98 139.90 125,082  7995 

n = 0 122.46 140.45 131,147  7625 

      2 125.17 140.93 137,773  7258 

      4 127.59 141.78 144,955  6899 

      6 129.90 142.87 152,695  6549 

      8 131.67 144.74 160,991  6212 

    10 133.14 147.13 169,844  5888 

    12 134.27 149.95 179,254  5579 

    14 134.87 153.16 189,221  5285 

    16 135.17 157.01 199,744  5006 

    18 135.62 160.79 210,825  4743 

    20 136.08 164.86 222,462  4495 

    22 136.09 169.15 234,656  4262 

    24 136.26 173.57 247,407  4042 

    26 136.56 178.18 260,714  3836 
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Figure Captions 

 

Fig. 1. 

 Plotting the sum of the squares of the two angular frequencies,  

(ω+
2 + ω-

2), derived from the observed periods of the normal modes, as a 

function of independent variable (1/I), the inverse of the modeled 

rotational inertia.  The rms departure of the points from the straight-line 

fit is about 0.010 s-2. 

 

 

Fig. 2. 

 Plotting the product of the squares of the two angular frequencies,  

(ω+
2 ω-

2), derived from the observed periods of the normal modes, as a 

function of independent variable (1/I), the inverse of the modeled 

rotational inertia.  The rms departure of the points from the straight-line 

fit is about 0.052 s-4.  Theory predicts that the data fit a straight line 

with y-intercept zero. 

 

 

Fig. 3. 

 Plotting the square of the difference of the squares of the two 

angular frequencies, (ω+
2 - ω-

2)2, derived from the observed periods of the 

normal modes, as a function of independent variable (1/I), the inverse of 

the modeled rotational inertia.  The rms departure of the points from the 

parabolic fit is about 0.032 s-4. 
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Fig. 4. 

 Observational data, and theoretical models, for the squares of the 

angular frequencies of the two normal modes of a Wilberforce pendulum, 

plotted as a function of the inverse of the modeled rotational inertia.  The 

plotted data points come from the measured periods in Table 1, and the 

independent variable is the inverse of the rotational inertia, as modeled in 

Appendix A.  The curves are plots of the theory (34), evaluated using the 

three best-fit parameters that describe the system; the straight lines 

show the results expected in the zero-coupling limit.  The rms departure 

of the data points from the theoretical curves is about 0.008 s-2, or about 

one-eighth of the size of the plotting symbols used. 

 

Fig. 5. 

 Theoretical predictions for the mode composition ratio, Θ/A, of 

(13), evaluated using the best-fit parameters (35), displayed for both 

normal modes.  The two curves both reach magnitude 57 rad/m at the 

'ideal tuning' value of (1/I) = 6280 (kg m2)-1. 

 

Fig. 6. 

 The fraction of the kinetic energy predicted to be in translational 

motion, computed using (40) and the best-fit parameters (35), and 

displayed for both normal modes as a function of inverse inertia (1/I). 
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